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RTES Demo 2004 L2/3 Components and Setting 

Jim Kowalkowski, etc. 

1 Introduction 

The purpose of this document is to identify and describe the software compo-
nents that should be present in the next RTES demonstration system. Included 
are many of the component relationships and a proposal for how they might be 
distributed within the system and how many might be present. The concentration 
here is on trigger level 2/3.  

A separate, but similar, document will address the Level-1 aspects of the RTES 
demonstration system for 2004. 

1.1 Rationale 

Level-2/3 was chosen because the management-level experiment control and 
monitoring concepts, features and software components match that of Level-1. In 
other words, the software elements necessary to configure the physical and logi-
cal layout of an experiment are similar; the messaging necessary to operate an 
experiment is similar. Passing messages around the system is similar. Level-2/3 
is more straightforward to understand and do initial testing of tool scaling and API 
testing.  It is also a good way to explore further the use of GME at BTeV. We can 
directly apply much of what is learned to Level-1. 

1.2 Definitions 

Crossing: the intersection of two "clouds" of particles, moving in opposite directions in the accelera-

tor.  As these clouds move through each other, occasionally one particle from each cloud will 

collide, sometimes spectacularly.  The crossing rate is a constant (396 ns), determined by the ac-

celerator. For BTeV, the average number of collisions per crossing will be six. (The actual number 

of collisions is Poisson distributed.) 

Event: a crossing with at least one collision. Strictly speaking, each collision in a crossing is a separate 

“event.” However, it is common usage to employ  the word "event" (singular) to refer collectively 

to all of the collisions (events), how ever many there may be, associated with a specific crossing. 

Reconstruction: the inversion of a set of discrete measurements from the detector, into a complex (and 

in some cases continuous) model of the physics interaction that gave rise to the discrete measure-

ments.  By analogy, to convert a collection of footprints in the sand into a hypothetical scenario of  

two people, and their dog, walking along the beach.  

ADC: analog to digital converter; for the sake of this document, "ADC count" is synonymous with 

"raw data" from the detector.  

1.3 Overview 

The first demonstration system emphasized cooperation to get a system running 
that contained many of the RTES technologies in a BTeV Level-1 trigger-like set-
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ting. It had many of the correct concepts present in a simplified form with little at-
tention given to overall design issues and implementation. The next 
demonstration system should go a step further by containing more functions of 
the trigger and better component interfaces. 

2 Goals 

Why are we doing this? How do we measure success? This section needs to be 
refined. 

High and Medium goals will be addressed; Low/No only as time permits. 

2.1 High Priority Goals 

1. Demonstrate the ability of GME to accurately model components of the trigger 
and predict overall system behavior when: 

A. Connections between components are context dependent (no universal 
protocol and API)  but appear to the GME user as simple relationships 
(the context dependence is hidden from user view), 

B. There is a large number of components, 
C. The source of trigger configuration information (algorithm modules, mode 

and control constants) comes from an external source. 
D. Message exchanges are not explicitly coded in a particular language in 

dialog boxes 
E. Trigger component physical layout, logical connections, and processing 

policies are distinct and can be easily chosen and combined at run time. 

Will attempt to demonstrate (at least) 5 types of GME designs: 

a) run control state machines - generating Python code for local, 
mid-level, and top nodes. Not hierarchical modeling. Rather, sepa-
rate models which will be used at various levels. (ABCD) 

b) GUIs - at least 3 Matlab based GUIs, for Run Control (com-
mand), Monitoring (display), and Faults (to/from ARMORs, VLAs). 
Easy to demonstrate user tailoring of the views. Will avoid writing 
Matlab code to keep the approach non-specific. (ABD)  

c) datatype descriptors - for defining messages and structures. 
Generates headers, and (de)marshalling code for Elvin. Provides 
integration across multiple domains: Matlab-Elvin, Run Control-
Elvin, ARMOR-Elvin, VLA-Elvin. (D) 

d) system integration modeling (SIML) - overall description of the 
system, to allow naming and address assignment. Does not "de-
fine" the hierarch so much as describe it (although, in a 
homogeneous processor-switch environment, "describe" and "de-
fine" almost mean the same thing). Generates addresses, Elvin 
router configurations. (ABCE(logical)) 



RTES Demo 2004 L2/3 Components and Setting 

 - 3 - 

e) ARMOR elements - models the types of elements (custom, stan-
dard) in use, but does not "define" custom element (i.e. can not just 
draw a picture to generate code that becomes a custom element). 
Generates configuration data and TCL for loading elements into 
ARMORs. Supports (generates wrapper for in-line?) custom ele-
ment code. (C) 

2. Demonstrate the ability to detect process failure (particularly filter program fail-
ure) and capture the data for an event in which there was a problem so that it 
may be used in the nightly build / unit test suite. Further, demonstrate remote ac-
cess to support diagnosis following a detected failure. 

Will demonstrate by running the demo and killing (hanging) proc-
esses. As many processes as possible will be covered by execution 
ARMORs. 

Will implement an Elvin logger to save messages; part of Monitor 
(or Fault) GUI. 

Will attempt to capture bad events to local files. But will not coa-
lesce the data. The working assumption will be that by writing data 
locally, it will be easy for Dcache to make things appear to be 
global/central. But for this demo, Dcache will not be implement. We 
will just assume that it (or something like it) will be there some day. 

Elvin messaging will provide some level of remote access. In par-
ticular, each Elvin publisher should respect a "level control" that will 
determine whether any given message should or should not be 
published. Capability, policy. If the Fault GUI can send Elvin mes-
sages to individual Elvin publishers, specifying individual "levels", 
then the operator will be able to turn up the volume from any se-
lected node or process. Dynamically controllable remote 
monitoring.  

Custom ARMORs may implement a fault-management hierarchy. 
Custom ARMORs may control VLAs. Custom ARMORs should 
communicate (to VLAs, to GUIs, to RC, to other Custom ARMORs) 
via Elvin. 

11. Demonstrate scalability, or at least indicate the expected behavior as the sys-
tem is scaled to full size. 

Can demonstrate by adding nodes in Harry's farm, and by (specific) 
"experiments" on Vampire (developed elsewhere, but run for nu-
merical results on Vampire). 

Test message control and channel limits. How much can we afford 
to send as Elvin messages. Experiment with hierarchy, to deter-
mine how many (layers of) Elvin routers are needed. Show cost, 
and how costs scale with system size. Show message traffic, and 
how that scales with system size. 
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Demonstrate consistency between physical system and NS2 simu-
lations. 

 

2.2 Medium Priority Goals 

3. Demonstrate use of standard protocols and APIs between components. 

By consistent use of rtes_ abstractions. No higher level code 
should use TCP or Elvin “raw”. 

5. Characterize ARMOR and Element performance. 

Studied by running the demo. Demonstrate 10% (or less) resource 
consumed by RTES infrastructure 

6. Demonstrate manual and automated removal of a worker for various hardware 
failures. 

Manual control via Fault GUI, etc. Kill process, hang process (re-
quires processes to subscribe to "please hang yourself" Elvin 
messages), hang node (may require ARMOR daemon to subscribe 
to "please hang yourself"). 

Automated behavior - ARMOR will try to restart crashed/killed 
processes. ARMORs will  migrate in response to a failed node. Hot 
spare nodes to be identified by SIML/GME picture; list provided to 
FTM (ARMOR). 

Will not try to reboot hung machines. 

9. Present precise APIs and encourage correct coding. 

Steve will (continue to) make this happen. At least correct coding… 

10. Show adoption of a coherent build system that allows for library and system 
releases and nightly unit and integrated testing. 

By using CVS and makefiles for GME (Windows side); UDM (Win-
dows/Linux side).  

Anyone should be able to build the runtime demo system on any 
appropriately prepared Linux platform: VU nodes, Harry's farm, or 
equivalent. Note that "prepared" may involve a nontrivial amount of 
3rd party installation; this "preparation" will not be automated. 

Anyone should be able to build/edit/generate-python-or-matlab 
GME diagrams on any appropriately prepared Windows platform: 
Mike Haney's laptop, other. Note that "prepared" may involve a 
nontrivial amount of 3rd party installation; this "preparation" will not 
be automated. 
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2.3 Low Priority Goals 

7. Demonstrate workers migrating from a partition from another as a run pro-
gresses and processor utilization drops. (Alternatively, demonstrate changing 
work-load assignments, controlled by trigger-need.) 

Not with respect to partitions or load balancing. Simulations (e.g. 
NS2) will study load balancing and task prioritization. No migration. 

 

2.4 No Priority Goals 

The following will probably not be done 

4. Demonstrate dynamic construction of an experimental run (filter configuration 
and error handling policy choice). 

Without a "real" L2 filter, and physicist support, this goal is not prac-
tical. We might demonstrate how Run Control can pass information 
(configuration) to the filter app. And we will have startup scripts for 
the execution ARMORs to follow. But these scripts will probably not 
be generated by drawing pictures in GME. 

8. Demonstrate the ability to record run activities (during an experiment) in a da-
tabase for later playback postmortem analysis. 

As (part of) a mitigation, effort will be made to capture bad events 
and place them into a file. Playback, however, is not part of the 
plan. That would require a "real" L2 filter to be meaningful. Play-
back will be implemented when we revisit the ITCH and Source and 
provide real implementations for them. 

 

3 Level 2/3 Diagrams 

3.1 Inside the Filter Program 

A filter program receives events (crossing results) one at a time. The event con-
tains data from a single crossing from within the detector. These data are 
composed of blocks – one block from each of the subdetectors that are active in 
the system. The data can be thought of as ADC counts for detector cells that 
contain reading within a configured range. The event passes through a sequence 
of reconstruction algorithms (e.g. turn ADC counts into energy values and parti-
cle trajectories), followed by a decision sequence that is used to determine if this 
event has enough interesting physics in it to keep. 

The diagram below shows some of the important components that will be present 
in a Level-2/3 program. A software framework allows these components to be 
plugged in and work together. The solid arrows represent real dataflow; the 
dashed arrows show logical flow of control and only appear in the trigger algo-
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rithm path. A service is a component that can be used by any other component in 
the system whenever it wants. An event passes through the algorithm compo-
nents; there may be several .  Modules perform a function similar to algorithm 
components on events. BTeV currently has a simple prototype software frame-
work and event data library. 

The event path: An event enters via the event stream input module, which 
unloads or transforms portions of the data into structures used by algorithm com-
ponents. The event is a complex database-like data structure. Pieces can be 
added to the event by name and pieces can be queried. The event is pushed 
through the algorithm components in the trigger algorithm path until a decision is 
made to accept or reject it. The detector information is highly packed; an algo-
rithm will first uncompress the data. A rejection can happen early on, removing 
the need for all the algorithms to run. A final decision is made looking across the 
individual trigger paths (bit-wise OR for example). Events that pass are com-
pressed or packed at the output module and written to output files depending on 
what trigger paths accepted the event. Periodically event files are sent to perma-
nent storage. The event path shown in the diagram shows an extremely trivial 
trigger path. BTeV currently has a working prototype of the L2 pixel algorithm. 

Data quality monitoring: As events flow through the filter program, the trigger 
algorithms keep statistics. The monitor data service is the keeper of these data 
structures and memory. At regular intervals, announcements are made through 
the control unit that statistics should be written out. BTeV currently has a proto-
type monitoring services based on the ROOT and HBOOK packages. [Question: 
are these centralized or distributed services?] 

Problems: If problems or unique situations are found in the data or logic errors 
are detected by the trigger algorithm components, the components write informa-
tion to the error logger service. The error logger service can synchronously 
deliver the message to another program [I suppose ARMOR-s can listen to these 
error messages?]. In general, trigger algorithm components do not determine 
themselves if things they discover are actually errors – it is up to the configura-
tion of the control unit or the program that is hooked up to the error logger to 
determine if the situation is really an error. BTeV uses the Fermilab/CD devel-
oped ErrorLogger package. 

Configuration and control: The configuration service organizes complex con-
figuration information into data structures that are used by each component in the 
program, including the control unit. Each of these components will most likely 
have a large set of unique parameters. As the system runs, this service may be 
notified of system state changes, such as run segment change, stop of run, 
pause of run, start of run, calibration set ready, or increase debug level. BTeV 
currently only supports initial configuration using the Fermilab/CD developed 
package called RCP. 

Other Services: The calibration/geometry services will most likely be skipped for 
this project. All the algorithms will need calibration constants that describe how to 
turn ADC counts into correct and meaningful physical quantities (characteristics 
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change with weather and beam exposure). They also need to know precisely 
where parts of the detector are (they move, sag, and change over time). 

3.1.1 Required R&D 

Incomplete. 

1. "real" or dummy L2 and L3 algorithm code needs to be secured from BTeV 
sources. 

2. Control unit. This element coordinates the execution of the trigger filter algo-
rithm components. Keep in mind, that while the discussion above, and figure 
below, focuses on only the "L2" and "L3" components, the control unit must ac-
commodate any number of conditioned-sequential, as well as unconditional 
components. This means both that there may be N (not necessarily 2) compo-
nents, and the execution of component "i" may depend on "i-1", or may not. An 
interface to the ControlUnit must be defined that allows dynamic insertion of algo-
rithm components in the control path. 

3. the nature of the configuration data needed by the L2 and L3 algorithms needs 
to be characterized, and saved in a file or database. A formal mechanism for ex-
posing the L2 and L3 configuration "hooks" must be developed. The 
configuration service must then be developed in a manner that allows changes in 
L2/L3 configuration needs to be satisfied exclusively through changes in the al-
gorithm code, and in the configuration file/database. If done correctly (e.g. data-
driven), the configuration service itself should never require recoding. 

4. placeholders for the other services (geometry, calibration, file writing) should 
be created. While the body of code in these placeholder may be minimal, the in-
terfaces should be fully developed. 

5. the monitor data service and event logger service may be profoundly similar; 
careful consideration of class definitions should be made to maximize the code 
(class) sharing between these two. Need to carefully consider the distribution as-
pect of these services. A concerning aspect is how the service data from 
individual worker nodes is collated together, and the fault-tolerance properties of 
the “merge” node of the service data. The FT infrastructure may need to insert 
collation routines in the services based on the fault conditions, or even may need 
to have read interface to service data in order to make assessment regarding po-
tential fault conditions. 
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Figure 1: Inside the Filter Program 

3.2 Inside a Worker 

A worker node will most likely run one filter program instance per CPU. The 
worker also contains processes to move data and configuration on and off the 
node, and processes to start and stop programs and detect and respond to er-
rors. Passed events and statistical information flow into temporary files on the 
node. 

Event Builder: Event data will arrive at a single point (called an event builder – a 
separate executable) within the node.  If data arrives in fragments, the event 
builder will coalesce the fragments into a whole event before dispatching it to one 
of the filter instances. The event builder will maintain a short queue of events, 
enough to keep the filter programs busy as much as possible. The event builder 
knows the protocol for requesting and receiving events. When the queue falls be-
low an acceptable level, the builder requests one or more events to be 
transferred from the Level-1 buffer to this node. 

Configuration/Data Movement: This is a caching/database tool used to effi-
ciently transfer things such as executable versions, configuration sets, and 
calibration data from the central repositories for quick access during data taking. 
The information appears as a large virtual file system. Other processes on the 
node trigger the transfers. This subsystem may also be used to migrate data and 
statistics off the processor to a permanent store. 
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Run Control: This program manages the state of the node. It starts and stops 
programs depending on the state on the trigger. It receives instructions about 
what versions of executables to run and what configuration sets they require.  

Filter Program: This was described in the previous section. It is important to 
recognize that a typical worker node will have 2 CPUs and hence will have two 
instances of the filter program (one per CPU), as shown in the figure below. 

Fault Handling: This part of the system includes processes that watch other 
running programs and periodically report node health to other supervisor nodes, 
and processes that actively watch or monitor conditions in the machine or run-
ning application to make sure everything is operating smoothly. This subsystem 
will need to get system performance and health information from lower-level 
components. 

3.2.1 Technology Choices 

Data Movement: It is possible to use the product dcache or fake it with NFS.  
The advantage of dcache is that it provides a pseudo-filesystem where parts of it 
can be faulted in from unrelated technology (e.g. RDBMS or tape robot). 

Statistics Cache: Most likely the information contained here will be in ROOT 
format (Histograms and Ntuples). 

Filter Program Configuration: The RCP library (Fermilab Computing Division 
product). 

System Monitoring: Ganglia is used by quite a few of the farms at Fermilab for 
recording things like process CPU/memory usage, network usage, and disk us-
age. PAPI provides an API to access the Intel/AMD on-chip high performance 
event counters. Oprofile can be used to record performance information about 
particular processes. Linux-trace is a Fermilab product that uses high perform-
ance kernel ring buffers to record kernel activities.  It has logic analyzer-like 
triggers that allows snapshots of activity to be recorded based on programmed 
events. LM sensors provides an API to access the CPU/case temperature and 
fan speeds. 

3.2.2 Protocols and IPC 

Event Builder to Filter Program: The typical complete event could be as large 
at 250KB. Event buffer management should add as little overhead as possible to 
event processing. One method to accomplish this is to create a shared memory 
area between the Event Builder and the filter programs and then use messaging 
to coordinate access to areas of this shared memory. In other words, the com-
munications here will be something efficient and custom for this application. The 
protocol must allow reconnection without restarting all players if a filter program 
crashes. A combination of Unix pipes, memory mapped files, and semaphores 
may be appropriate. 
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The following example implementation is offered not to define the solution, but 
only to illuminate the requirements. This example solution may or may not be op-
timal. 

Consider a collection of 10 memory mapped files, each representing one "slot", 
and suitable for holding one event. The Event Builder is the only application 
which can write into these files; each of the filter program instances can only 
read. The Event Builder maintains a simple scoreboard to track the status of the 
slots; the scoreboard is also a memory mapped file. 

The Event Builder pulls data from the L1 buffers, and arranges the various frag-
ments (BLOBs) into a slot. When the entire event has been assembled, the 
Event Builder marks the slot as "ready" on the scoreboard, and if there are "too 
many" (configurable limit) other "empty" slots, the Event Builder proceeds to fill 
the next. 

FilterProgram_1 completes processing, and messages the Event Builder to indi-
cate completion and availability for a next assignment. The Event Builder knows 
(from the scoreboard) which slot had been assigned to FilterProgram_1, and 
marks this slot as "empty". The Event Builder then selects a "ready" slot, 
changes the scoreboard to read "assigned to Filter_1", and sends a reply mes-
sage to FilterProgram_1 indicating which slot has been assigned to it. 
FilterProgram_1 then draws data from that slot, as it wishes. Upon completion, 
the cycle repeats. 

If FilterProgram_1 crashes and restarts, it will send a message to the Event 
Builder asking for a first assignment (as opposed to the completion of a previ-
ous). The Event Builder recognizes, from the scoreboard and the first request, 
that FilterProgram_1 must have crashed. The Event Builder marks the slot as 
"reassigned to Filter_1" and sends the reply to the filter program. If the filter pro-
gram crashes again (detected as a first request and an already reassigned slot), 
the Event Builder declares the event to be pathological, and forwards it to the 
Fault Handler for possible inclusion in the collection of test cases for future use. 

[Sandeep: This sounds like a specific fault-mitigation behavior, a specific way of 
dealing with crashes related to data, shouldn’t this be handled in a more coordi-
nated manner with FMs/ARMORs/VLAs] [Mike: yes, somewhat… The Fault 
Handler is the VLA/ARMOR domain. Forwarding the event to the Fault Handler is 
essentially the same as sending a message to the VLA/ARMOR (ok, I'm reaching 
here). But remember, this is just an example to promote discussion. Neverthe-
less, I added the word "possible" to take the edge off of the specific resulting 
action.] 

If the Event Builder crashes and restarts, it will understand the state of the sys-
tem from the scoreboard (memory mapped file). It may be the case that the 
scoreboard is not perfectly accurate, depending on when and how the Event 
Builder crashed (e.g. whether a "flush" succeeded to write from memory to disk). 
The Event Builder will act in good faith, based on the state of the scoreboard. 
This may result in some lost events. Note that it may be advisable to mark the 
scoreboard to indicate the slot "being filled" with data from the Level-1 buffers. 
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Following a crash, that slot will be forfeit, and that event can be recognized as 
lost. 

Into the Event Builder: A simple, efficient messaging library would be appropri-
ate. PVM may work if it has good fault handling characteristics, such as 
reconnection upon communication failure or the master event distributor capable 
of coping with a worker node leaving or coming back into the system. A really 
simple version of CORBA ORB may actually work also. There is a project the out 
of the LHC experiment for doing this sort of thing (I had forgotten the name, 
Dinker knows the product). I remember it being a multi-channel system. 

Standard Message Interface for Controls: The remaining links could use a 
trigger-wide messaging system. This includes Error Logger to Fault Manager, fil-
ter program Control Unit to Run Control, Run Control to upper-level Run Control, 
and Fault Manager to Run Control. This message passing can be slower and al-
low for more flexibility, lower coupling, and multiple language support. The 
computing division supports a few libraries: D0 message passing library (C++), 
Merlin (Luciano). A solution based on XMLRPC or SOAP may work well also. 
(There will be another document to discuss message passing in more detail.) 

Notification: Perhaps this can be handled with the protocol/IPC discussion ear-
lier, however I would recommend adoption of a common/unified notification 
service, with the ability to multicast (within the same node). Reason being there 
may be events such as run completion, which multiple programs on the node 
would be interested in knowing about. 

3.2.3 Required R&D 

Incomplete. 

1. dcache 

2. ganglia 

3. shared memory event store, and scoreboard  

4. notification service, publish/subscribe 
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Figure 2: Inside an L2/L3 Worker Node (Processor) 

3.3 A Proposed Setting 

Multiple event sources mimic the trigger’s Level-1 buffers. The real system will 
have one crossing (an entire event) spread over each of the L1 buffers (a frag-
ment per BTeV sub-detector). We do not need to mimic this behavior on day one. 
We can move to it at a later time. Workers (i.e. the Event Builder in each worker) 
request events via the event distribution manager (ITCH). The distribution man-
ager pulls data out of the buffers. This is somewhat difference than the current 
BTeV plan, which is for the ITCH to just make routing decision and let the buffer 
push data directly to worker nodes. Event data flows through the workers and out 
to the permanent store. In this demonstration, a single, large database contains 
all the information necessary to perform an experimental run – including execu-
tables, configuration, partition assignments, routing assignments, and fault 
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management geography data. Included is a hierarchy of controls, monitoring, and 
fault handling. 

Event Source: Have a large set of events that will exercise various aspects of 
the system, including use of network bandwidth, CPU usage, and trip errors in 
the filter programs and utility programs in the main data path. The events can 
come from BTeVGEANT (BTeV detector simulation program) or be random data 
with a header describing the properties that it would have. The GEANT events 
can be made with qualities that will cause problems in the L2/3 filter algorithms. 

ITCH: These machines connect the buffering machines in Level-1 to the nodes in 
Level-2/3, and perform the function of event distribution. Nodes in Level-2/3 will 
demand crossing data when they need more work. The ITCH will either tell the 
L1 buffer where to deliver data or collect the data and send it to the node. The 
latter may allow for more predictable resource use (network and memory on the 
buffer nodes). 

L2/3 Processing Elements: These are the main workers running the filter pro-
grams described in previous sections. Depending on the system load and the 
test being run, an actual node can be configured to run one or more processing 
elements (workers). 

Managers: A set of nodes, each in charge of a group of workers (processing 
elements). Functions such as administration, configuration commands, state noti-
fications and management, and fault management will utilization these nodes.  
Watching for problems or trends across large areas of the trigger will require use 
of these nodes. We will define a hierarchical organization with 3-levels of hierar-
chy (Global, Managers, and Workers), the manager described here can be 
identified as a manager of a region of workers. In order to identify trends across a 
region, the manager will need access to region wide information: this includes 
monitor data/statistics, error log data, etc.  

Global Trigger Manager: In the management hierarchy, this is the head node. 
This is the main gateway for control and management in the trigger. This node or 
set of nodes will know the protocols to talk with external systems. 

Database Interface: This is the subsystem that manages access to information 
stored in databases, repositories, or external file systems. The databases contain 
information such as trigger configuration information, experimental run histories, 
node status data, and performance data. In this demonstration, we will need to 
simplify this. One way to simplify this is to remove as many DB queries as possi-
ble and provide information to workers and other subsystem in the file format it 
expects. The transport can probably start out as NFS, but later should move to a 
subsystem with caching behavior, such as dcache. This part of the system 
should not be used to inform systems of information that flows through the con-
trol system (e.g. state changes or announcement of what configuration to use). 
This system should not be used as a place to track things that change dynami-
cally.  The primary purpose, right now, is to allow programs on the workers to 
efficiently begin execution at the start of an experiment (a run) – without worrying 
about swamping the network of database component a run start. We want the 
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workers to stage or cache information that is frequently used across runs or in-
formation needed for the current run before the run actually starts. If NFS is 
used, then there will need to be a separate set of programs that populate the 
NFS area with programs and other important data from other sources like the 
CVS repository or release build area. If dcache is used, we may be able to install 
a set of routines that get triggered when cache faults occur. Dcache also man-
ages the disk space you give it like a real cache. A real system may also allow 
more than just a file system abstraction – something like ad hoc SQL queries will 
probably be necessary also. This is something to discuss: should there be a da-
tabase query method directly from the workers or should be controls/monitoring 
system message channels be used? 

DAQ Element: The DAQ system will have many programs that can and will ac-
cess the trigger for varying lengths of time. A run control daemon will most likely 
always be connected. A diagnostic program will connect for short periods of time. 
A monitoring program may connection periodically to take some performance 
measurements. The DAQ element represents a program that talks to the trigger 
directly. This involves authentication and known constraints on resource use. 

Monitoring Interface: This is the GUI that control room personnel use to watch 
how well the system is performing and where they get notified of errors or prob-
lems. 

Run Control Interface: This is the GUI that is used to configure and operate an 
experimental run. 

Analysis: This is the set of tools used to do post mortem analysis of a run or 
compare performance data between two runs or to locate trends across runs. 

3.3.1 Technology Choices 

The management elements should use the same technology as the worker ele-
ment state management program. Luciano (from the DAQ group) may have 
made some choices regarding the DAQ elements. We discussed using Matlab 
for all GUIs and analysis. We discussed starting with NFS to start out the data-
base interface, knowing that this will be inadequate. The connection to the event 
sources should be the same as in the connection from the workers to the ITCH. 

3.3.2 Protocols and IPC 

The only new link introduced here is from global trigger manager to DAQ ele-
ment. The default should be to use the same protocol as the management 
elements. 

3.3.3 Required R&D 

Incomplete. 

1. Matlab for the RunControl and Monitoring interfaces 
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2. ITCH, Event source, event data set. Note that to get started, these can be 
combined into a single process (with a file containing a trivial number of events 
worth of data), and later elaborated into the multimode solution called for in the 
figure below. 

3. database interface. Care should be exercised in allocating development effort 
to this task, as BTeV will almost certainly make choices which will not be identical 
with RTES. Therefore, the demo solution should be generic, and simple. 
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Figure 3: Overall System Architecture? 

4 System states. 

Incomplete. 
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5 Fault Models 

The following fault models should be considered: 

1. process crashes. Any process can crash; every process should be restartable. 
Execution ARMORs should be employed to cover almost everything… It would 
be desirable to be able to (remotely) poison any process to cause it to crash (as 
opposed to "ps -ax; kill -9"). Alternatively, a "grim reaper" script might be devel-
oped (to seek out by name, and terminate). 

2. process loops. Especially in the filter algorithm(s), a(ny?) process can simply 
loop. This is not the same as a crash, although the recovery following detection 
may be equivalent. 

3. bad connections. Event source to ITCH; ITCH to workers; workers to manag-
ers; workers to database; manager to DAQ/monitor/RunControl. It would be 
desirable to corrupt messages, and/or break channels in each of the above 
cases. 

4. disk and database failures. Corruption, or simple loss of service. 

5. worker node crash: an entire worker node crashes  

6. manager node crash:  

6 Relationship to a new Level-1 Project 

Incomplete. 

At this time, the L2/3 demonstration system is fully independent from any Level-1 
project, past or present. 

However, if resources are available, it should be relatively simple to allow Level-1 
accept/reject messages to be sent to the ITCH, which in turn will simply alter the 
apparent event number of each event to track with the Level-1 activity. The ac-
tual data drawn from the event data set would be the same, regardless of Level-
1, and every event from that set would be processed; the ITCH would not throw 
away data. However, through the expedient of creative labeling, the L2/3 system 
would "see" a discontinuous series of event numbers, corresponding to Level-1 
accepts. 

VLAs: there is one cross-over between Level-1, and L2/3 that merits discussion. 
It has been proposed that the Level-1 VLA solution find a way to capture and re-
port the value of the program counter, and/or contents of the stack, in the event 
of a DSP worker crash. The monitoring interface at the top-most level will then 
decode this information (from a symbol table) to indicate, by name, what the 
worker was doing at the time of the crash. As the VLA concept is platform inde-
pendent, it may be appropriate for the equivalent VLA solution (report-on-crash 
the node, process name, stack-trace, etc.) to be developed for the L2/3 demon-
stration system. 
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7 System Modeling 

One of the key issues identified by the reviewers in the use of modeling tool, was 
a single model for the entire system, which makes it non-scalable, difficult for 
multi-user edits, and difficult to version different parts of the model. Another chal-
lenge arises from the fact that there is not a single unified component model that 
spans the entire system. A component model essentially defines what it means 
to be a “component”, what are its interfaces, and how components interact with 
each other. In the BTeV Trigger system, in general, and the L2/L3 demo system 
in particular there are many definitions of a component, and many different styles 
of interaction between components, for ex: an Event Builder, and a Filter Pro-
gram, both are components which execute concurrently and interact through a 
specific protocol, which involves the asynchronous data transfers via shared 
memory, and notifications of processing completion; within a Filter Program, also 
there are several components which execute sequentially coordinated by a con-
trol unit, and exchange data in a pipelined fashion; the RunState manager is also 
another component that supervises/coordinates the execution of other compo-
nents by sending start/stop notifications.  

This makes it difficult to design a modeling language that addresses all the com-
ponent models. Having a single grand-unified modeling language is clearly a 
non-scalable solution. 

We propose a two-pronged approach to address this situation. We design differ-
ent narrowly focused modeling languages for different component models, for ex: 
State-Machines for modeling mitigation behaviors, Dataflow modeling for the in-
ternals of the Filter Program, ARMOR element-interaction modeling for ARMOR-
s. Individual components can be modeled using these modeling languages and 
these models are stored in separate models/files, which allows multiple users to 
independently developp/evolve/maintain/version these models. We also define 
an abstracted System Integration and Monitoring Language (SIML). This ab-
stracted language shows the overall hierarchical organization and interaction, of 
the system components. Note that components will have a fairly loose definition 
in this language. The concrete models of these components, which could be 
GME models in the modeling languages listed earlier, or it could be just source 
code, are linked in to the abstract system model, through file system paths, and 
model object ids (or code references e.g. class name, function name, …). We 
use file system paths relative to the CVS module directory, for links. We can also 
provide GME plug-ins for creating links, and even displaying linked models/code. 
The SIML also allows capturing the debug/monitor information of a component, 
for ex: a State-Machine component would have a ‘CurrentState’, ‘TimeInCurrent-
State’, ‘StateHistory’, type of monitor elements, a Hardware (CPU) component 
would have a ‘CurrentTemp’, ‘CurrentUtilization’ etc. type of monitor elements. 
The idea is that during system operation a user should be able to drill into the 
system hierarchy, and ask for status update on the component. A GME plug-in 
queries the MonitoringData service for this information using the ID of the com-
ponent, and animates it on the models. The model updates could be on-demand, 
or periodic refresh.  
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From a versioning and maintenance perspective the idea of using file/model links 
is a potentially viable one. Take for example the LFM behavior from the SC2003 
demo. This and all other behaviors were modeled in a single model file which 
was in a different location from the component directory in the CVS. With the 
idea proposed above we can create one model for each behavior, store it as an 
XML file in the appropriate component directory. The interpreter (command-line 
form of interpretation is available) invocation could be integrated with the Build 
process, such that during the build the model is interpreted, its code generated, 
and the code is compiled. 

8 Conclusion 

Summarize the important points. 

 


